The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 1 1 1 2 1 1 1 1 X 2 1 X 1 1 1 X 1 1 1 X 1 0 1 1 0 1 1 1 X 2 2 1 X
0 X 0 0 0 2 0 2 0 X+2 X X+2 X+2 X X+2 X 2 X+2 0 X 0 X 2 X+2 0 X 2 0 2 X X X 0 0 X 0 2 X+2 X+2 X X+2 0 X+2 X 2 X+2 0 2 2 X 0 2 X+2 2 X+2 X+2 0 X X X+2 X 0 0 X 2 0 2 2 X X+2 2 2 2 X X X+2 0 X 0 X X X+2 0 0 2 X+2 2 X 0 2 X+2 X+2
0 0 X 0 0 2 X+2 X X+2 X X X X+2 0 0 0 2 2 2 X X+2 2 X X 0 0 X+2 2 X X 0 X+2 2 X 2 0 X+2 0 X 0 X X 2 X+2 2 X+2 0 0 X X 2 0 0 X+2 X 2 X+2 0 X 2 X+2 0 X 0 X+2 2 2 X 0 X+2 X+2 2 2 X 0 0 X 2 2 X X+2 X+2 0 X 2 2 0 X 2 X X 0
0 0 0 X 0 X X+2 X 2 0 X+2 X 0 X X 2 0 0 X X 2 X+2 X+2 0 0 X+2 X+2 X+2 0 X+2 0 2 2 2 X X+2 X+2 0 X+2 X+2 0 2 2 2 X+2 X X+2 2 X+2 0 X X 0 2 X X 0 X X+2 2 X+2 2 2 2 0 X+2 0 X+2 2 2 0 0 X+2 2 X+2 X+2 X+2 X+2 0 2 2 0 2 2 0 X+2 X+2 X+2 2 2 0 0
0 0 0 0 X X 2 X+2 X X X+2 0 0 2 X+2 X+2 X+2 0 2 X+2 X+2 X+2 0 0 2 0 X X+2 2 2 X X+2 2 0 0 X X+2 X 2 X+2 X+2 X+2 0 2 0 X 0 X 2 X+2 X+2 X 0 0 2 0 0 X+2 2 X+2 X 2 X+2 2 2 2 0 X+2 X 2 X+2 2 X 0 X 2 0 X X X X+2 X X+2 0 X X+2 X+2 X+2 X X+2 2 0
generates a code of length 92 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 84.
Homogenous weight enumerator: w(x)=1x^0+70x^84+4x^85+188x^86+24x^87+217x^88+72x^89+208x^90+164x^91+261x^92+148x^93+230x^94+64x^95+125x^96+32x^97+96x^98+4x^99+52x^100+32x^102+37x^104+10x^106+4x^108+2x^110+2x^114+1x^156
The gray image is a code over GF(2) with n=368, k=11 and d=168.
This code was found by Heurico 1.16 in 0.867 seconds.